To Improve Chronic Pain, Get More Sleep (Coffee Helps Too)

BIDMC Contact: Jacqueline Mitchell Phone: 617-667-7306; Email: jsmitche@bidmc.harvard.edu

MAY 08, 2017

Caffeine and other drugs to promote wakefulness ease pain better than analgesics in mice


Coffee caffine A

BOSTON – New research from Beth Israel Deaconess Medical Center (BIDMC) and Boston Children’s Hospital shows that chronic sleep loss increases pain sensitivity. It suggests that chronic pain sufferers can get relief by getting more sleep, or, short of that, taking medications to promote wakefulness such as caffeine. Both approaches performed better than standard analgesics in a rigorous study in mice, described in the May 8, 2017 issue of Nature Medicine.

Sleep physiologist Chloe Alexandre, PhD, of BIDMC and pain physiologist Alban Latremoliere, PhD, of Boston Children’s precisely measured the effects of acute or chronic sleep loss on sleepiness and sensitivity to both painful and non-painful stimuli. They then tested standard pain medications, like ibuprofen and morphine, as well as wakefulness-promoting agents like caffeine and modafinil. Their findings reveal an unexpected role for alertness in setting pain sensitivity.

Keeping mice awake, through custom entertainment

The team started by measuring normal sleep cycles, using tiny headsets that took electroencephalography (EEG) and electromyography (EMG) readings. “For each mouse, we have exact baseline data on how much they sleep and what their sensory sensitivity is,” says Latremoliere, who works in the lab of Clifford Woolf, PhD, in the F.M. Kirby Neurobiology Center at Boston Children’s.

Next, unlike other sleep studies that force mice to stay awake walking treadmills or falling from platforms, Alexandre, Latremoliere and colleagues deprived mice of sleep in a way that mimics what happens with people: They entertained them.

“We developed a protocol to chronically sleep-deprive mice in a non-stressful manner, by providing them with toys and activities at the time they were supposed to go to sleep, thereby extending the wake period,” says Alexandre, who works in the lab of Thomas Scammell, MD, at BIDMC. “This is similar to what most of us do when we stay awake a little bit too much watching late-night TV each weekday.

To keep the mice awake, researchers kept vigil, providing the mice with custom-made toys as interest flagged while being careful not to overstimulate them. “Mice love nesting, so when they started to get sleepy (as seen by their EEG/EMG pattern) we would give them nesting materials like a wipe or cotton ball,” says Latremoliere. “Rodents also like chewing, so we introduced a lot of activities based around chewing, for example, having to chew through something to get to a cotton ball.

In this way, they kept groups of six to 12 mice awake for as long as 12 hours in one session, or six hours for five consecutive days, monitoring sleepiness and stress hormones (to make sure they weren’t stressed) and testing for pain along the way.

Pain sensitivity was measured in a blinded fashion by exposing mice to controlled amounts of heat, cold, pressure or capsaicin (the agent in hot chili peppers) and then measuring how long it took the animal to move away (or lick away the discomfort caused by capsaicin). The researchers also tested responses to non-painful stimuli, such as jumping when startled by a sudden loud sound. 

“We found that five consecutive days of moderate sleep deprivation can significantly exacerbate pain sensitivity over time in otherwise healthy mice,” says Alexandre. “The response was specific to pain, and was not due to a state of general hyperexcitability to any stimuli.

Analgesics vs. wake-promoting agents

Surprisingly, common analgesics like ibuprofen did not block sleep-loss-induced pain hypersensitivity. Even morphine lost most of its efficacy in sleep-deprived mice. These observations suggest that patients using these drugs for pain relief might have to increase their dose to compensate for lost efficacy due to sleep loss, thereby increasing their risk for side effects.

In contrast, both caffeine and modafinil, drugs used to promote wakefulness, successfully blocked the pain hypersensitivity caused by both acute and chronic sleep loss. Interestingly, in non-sleep-deprived mice, these compounds had no analgesic properties.

“This represents a new kind of analgesic that hadn’t been considered before, one that depends on the biological state of the animal,” says Woolf, director of the Kirby Center at Boston Children’s. “Such drugs could help disrupt the chronic pain cycle, in which pain disrupts sleep, which then promotes pain, which further disrupts sleep.”

A new approach to chronic pain?

The researchers conclude that rather than just taking painkillers, patients with chronic pain might benefit from better sleep habits or sleep-promoting medications at night, coupled with daytime alertness-promoting agents to try to break the pain cycle. Some painkillers already include caffeine as an ingredient, although its mechanism of action isn’t yet known. Both caffeine and modafinil boost dopamine circuits in the brain, so that may provide a clue.

"This work was supported by a novel NIH program that required a pain scientist to join a non-pain scientist to tackle a completely new area of research,” notes Scammel, professor of neurology at BIDMC. “This cross-disciplinary collaboration enabled our labs to discover unsuspected links between sleep and pain with actionable clinical implications for improving pain management.”

“Many patients with chronic pain suffer from poor sleep and daytime fatigue, and some pain medications themselves can contribute to these co-morbidities,” notes Kiran Maski, MD, a specialist in sleep disorders at Boston Children’s. “This study suggests a novel approach to pain management that would be relatively easy to implement in clinical care. Clinical research is needed to understand what sleep duration is required and to test the efficacy of wake-promoting medications in chronic pain patients.”

Alexandre (BIDMC) and Latremoliere (Boston Children’s) were co-first authors on the paper. Woolf (Boston Children’s) and Scammell (BIDMC) were co-senior authors. Ashley Ferreira and Giulia Miracca of Boston Children’s and Mihoko Yamamoto of BIDMC were coauthors. This work was supported by grants from the NIH (R01DE022912, R01NS038253). The Neurodevelopmental Behavior and Pharmacokinetics Cores at Boston Children’s Hospital, the metabolic Physiology Core at BIDMC (P30DK057521) and P01HL09491 also supported this study.

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital–Milton, Beth Israel Deaconess Hospital–Needham, Beth Israel Deaconess Hospital–Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, MetroWest Medical Center, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox.

About Boston Children’s Hospital

Boston Children’s Hospital is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including seven members of the National Academy of Sciences, 11 members of the Institute of Medicine and 10 members of the Howard Hughes Medical Institute comprise Boston Children’s research community. Founded as a 20-bed hospital for children, Boston Children’s today is a 404-bed comprehensive center for pediatric and adolescent health care. Boston Children’s is also the primary pediatric teaching affiliate of Harvard Medical School.