Study: Non-invasive Electrical Stimulation Alters Blood Flow in Brain Tumors

Jacqueline Mitchell (BIDMC Communications) 617-667-7306, jsmitche@bidmc.harvard.edu

AUGUST 14, 2019

First-of-its-kind pilot study suggests repeated treatments could slow tumor growth.
BOSTON – In a first-of-its kind study, neurologists at Beth Israel Deaconess Medical Center (BIDMC) tested the use of non-invasive electrical stimulation as a novel therapeutic approach to brain tumors. In an experiment published in Science Advances, the scientists – led by Emiliano Santarnecchi, PhD, principal investigator at the Berenson-Allen Center For Non-Invasive Brain Stimulation at BIDMC – demonstrated that applying low-intensity electrical stimulation to the brains of patients with tumors resulted in decreased blood flow within tumors while leaving the rest of the brain unchanged. Although further study is needed, the findings suggest that a series of such treatments could modify tumor growth and progression. 

“Many patients with brain tumors have limited therapeutic options, most of which come with severe side effects,” said Santarnecchi, who is also an Assistant Professor of Neurology at Harvard Medical School. “Our study found that electrical stimulation resulted in a significant reduction of blood flow to the tumor, with no changes in the rest of the brain. Given the safety profile of non-invasive brain stimulation, the ease of its application, its relatively low cost and the possibility of combining it with other drug-based therapies, our findings might lead to non-invasive therapeutic options for patients with brain tumors.” 

Non-invasive brain stimulation – also known as transcranial electrical stimulation (tES) – is a 20- year old, FDA-approved technology that is used to treat a number of psychiatric conditions, including treatment-resistant depression. Low-intensity electrical fields are delivered to the brain through the skull via electrodes placed on the scalp. While many researchers continue to investigate the safe and relatively low cost treatment’s potential to treat psychiatric disorders and to enhance cognitive skills such as memory and concentration, this study represents the first time tES has been tested in patients with brain tumors. 

Santarnecchi and colleagues recruited 50 patients with brain tumors willing to participate. Given the delicate patient population, eight participants were able to complete the trial – six with glioblastoma, an aggressive tumor that originates in the brain, and two with metastatic tumors that originated in the lung.  

The patients received transcranial stimulation while their brain blood flow was monitored using magnetic resonance imaging (MRI) technology. Based on prior research showing a reduction of blood flow in bodily tumors exposed to electric stimulation, Santarnecchi and team predicted that tES would have a similar effect on the brain tumors. However, the team was surprised to see significant reductions in blood flow to the tumors after a single tES session. No changes in blood flow or activity in the rest of the brain were observed, and none of the patients reported any adverse effects. 

“This technique still requires further testing to optimize frequency and duration of treatment and to fully personalize protocols for individual patients,” said Santarnecchi. “Future studies will investigate the impact of repeated tES sessions, evaluate the potential combination of tES with other cancer therapies and assess tES in other forms of brain tumors.” 

In addition to Santarnecchi, co-authors included; co-lead author Giulia Sprugnoli, Francesco Neri, Lucia Mencarelli, Davide Momi, Alessandro Rossi and Simone Rossi of Siena Medical School; co-lead author Lucia Monti, Alfonso Cerase, Laura Lippa, Giuseppe Oliveri and B. Batani of Santa Maria alle Scotte Medical Center; Giulio Ruffini and Ricardo Salvador of Neuroelectrics Corporation, who provided biophysical modeling and hardware for the study; and Alvaro Pascual-Leone of BIDMC. 

Alvaro Pascual-Leone serves on the medical advisory board for Neuroelectrics. The other authors declare that they have no competing interests. 

The team was supported in part by the BROAD Institute at Harvard-MIT (2016P000351); the Defense Advanced Research Projects Agency (DARPA HR001117S0030); BIDMC CAO grant 2017; the National Institute of Aging at the National Institutes of Health (NIH R01-AG060981-01); the National Institutes of Health (R01HD069776, R01NS073601, R21 MH099196, R21 NS082870, R21 NS085491, R21 HD076160, NIH R01-AG060981-01).
 

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding.

BIDMC is in the community with Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Beth Israel Deaconess Hospital-Plymouth, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Healthcare, Beth Israel Deaconess HealthCare, Community Care Alliance and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Rehabilitation Center and is a research partner of Dana-Farber/Harvard Cancer Center and the Jackson Laboratory. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.org.

BIDMC is part of Beth Israel Lahey Health, a new health care system that brings together academic medical centers and teaching hospitals, community and specialty hospitals, more than 4,000 physicians and 35,000 employees in a shared mission to expand access to great care and advance the science and practice of medicine through groundbreaking research and education.