Scientists Visualize the Connections Between Eye and Brain

Lindsey Diaz-MacInnis 617-667-7372, ldiaz2@bidmc.harvard.edu

MAY 31, 2018

BIDMC Research Briefs showcase groundbreaking scientific advances that are transforming medical care.

Most of the human brain’s estimated 86 billion nerve cells, or neurons, can ultimately engage in a two-way dialogue with any other neuron. To shed more light on how neurons in this labyrinthine network integrate information – that is, precisely how multiple neurons send and combine their messages to a target neuron – a team of researchers at BIDMC and Boston Children’s Hospital (BCH) focused on a rare case in which information only travels in one direction: from the retina to the brain.

In this study published May 31 in the journal Cell, Mark Andermann, PhD, Chinfei Chen, MD, PhD, and colleagues developed a means of tracking the activity of the far-reaching ends of retinal neurons (called boutons) as they deliver visual information to the thalamus, a brain region involved in image processing. 

As they relay discrete bits of visual information to the brain, different types of retinal neurons respond to distinct features of visual content such as an object’s direction of motion, brightness, or size. Conventional wisdom held that these lines of information remained separated in the thalamus. Instead, Andermann and Chen’s team found that boutons from different types of retinal neurons were often organized in local clusters and that boutons in a cluster typically make contact with a common target neuron, leading to a mixing of different lines of information. However, this mixing was not random – boutons in a cluster tended to share a common sensitivity to one or more visual features.

“The selective mixing of information from this arrangement of nearby boutons may be the retina’s version of Pointillism, the neo-expressionist art technique in which nearby dots of different colors are fused together to create new and diverse colors,” said Andermann, a member of the Division of Endocrinology, Diabetes and Metabolism at BIDMC and an Associate Professor of Medicine at Harvard Medical School. “In this way, this first interface between eye and brain is surprisingly sophisticated.”

About Beth Israel Deaconess Medical Center

Beth Israel Deaconess Medical Center is a leading academic medical center, where extraordinary care is supported by high-quality education and research. BIDMC is a teaching affiliate of Harvard Medical School, and consistently ranks as a national leader among independent hospitals in National Institutes of Health funding. BIDMC is the official hospital of the Boston Red Sox.

Beth Israel Deaconess Medical Center is a part of Beth Israel Lahey Health, a health care system that brings together academic medical centers and teaching hospitals, community and specialty hospitals, more than 4,700 physicians and 39,000 employees in a shared mission to expand access to great care and advance the science and practice of medicine through groundbreaking research and education.