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Posterior Capsular Plication Constrains
the Glenohumeral Joint by Drawing
the Humeral Head Closer to the Glenoid
and Resisting Abduction
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Background: Shoulder pain is a common problem, with 30% to 50% of the American population affected annually. While the
majority of these shoulder problems improve, there is a high rate of recurrence, as 54% of patients experience persistent
symptoms 3 years after onset.

Purpose: Posterior shoulder tightness has been shown to alter glenohumeral (GH) kinematics. Clinically, posterior shoulder
contractures result in a significant loss of internal rotation and abduction (ABD). In this study, the effect of a posterior capsular
contracture on GH kinematics was investigated using an intact cadaveric shoulder without violating the joint capsule or the rotator
cuff.

Study Design: Controlled laboratory study.

Methods: Glenohumeral motion, humeral load, and subacromial contact pressure were measured in 6 fresh-frozen left shoulders
during passive ABD from 60� to 100� using an automated robotic upper extremity testing system. Baseline values were compared
with the experimental condition in which the full thickness of posterior tissues was plicated without decompressing the joint
capsule.

Results: Posterior soft tissue plication resulted in increased compression between the humeral head and the glenoid (axial load) at
90� of ABD. Throughout ABD, the posterior contracture increased the anterior and superior moment on the humeral head, but it did
not change the GH kinematics in this intact model. As a result, there was no increase in the subacromial contact pressure during
ABD with posterior plication.

Conclusion: In an intact cadaveric shoulder, posterior contracture does not alter GH motion or subacromial contact pressure
during passive ABD. By tightening the soft tissue envelope posteriorly, there is an increase in compressive load on the articular
cartilage and anterior/superior force on the humeral head. These findings suggest that subacromial impingement in the setting of a
posterior soft tissue contracture may result from alterations in scapulothoracic motion, not changes in GH kinematics.

Clinical Relevance: This investigation demonstrates that posterior capsular plication increases the axial load on the shoulder joint
during ABD. While a significant difference from baseline was observed in the plicated condition, posterior capsular plication did not
change GH motion or subacromial contact pressure significantly.
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Shoulder pain is a common problem, affecting 30% to 50% of
the American population annually.19 While the majority of
these shoulder problems improve, there is a high rate of
recurrence, as 54% of patients experience persistent symp-
toms 3 years after onset.19 In 2008, rotator cuff pain and

injuries resulted in approximately 2 million consultations,
and more than 53,000 surgical repairs were performed in
the United States alone.40,42

Subacromial impingement is the most common disorder
of the shoulder, accounting for 44% to 65% of all shoulder
complaints.45 As a condition, it encompasses various
pathologies, including partial-thickness rotator cuff tears,
rotator cuff tendinosis, calcific tendinitis, and subacromial
bursitis, with associated pain resulting in the loss of
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function and disability.18,22 In recalcitrant cases, a posterior
capsule contracture has been found to result in altered
shoulder kinematics, leading to dysfunction and disability.29

Posterior contracture results in a significant loss of inter-
nal rotation and abduction (ABD).10,29,34,38,39 Harryman
et al12 demonstrated an increase in anterior and superior
glenohumeral (GH) translation during passive forward
flexion after tightening of the posterior capsule. Clinically,
this problem leads to increased subacromial contact pres-
sure by altering both GH motion and scapulothoracic (ST)
motion. In a cadaveric study, Grossman et al11 found a pos-
terosuperior shift in the humerus after simulating a poster-
ior capsular contracture. Similarly, Clabbers et al5 and
Anderson et al (Anderson K, Deng X-H, Johnson T, Altchek
DW. ‘‘Biomechanical Analysis of Posterior Capsular Con-
tracture of the Shoulder.’’ Presented at American Orthopae-
dic Society for Sports Medicine, 2001) reported that posterior
contracture contributes to changes in the overhead athlete’s
motion. Additionally, Anderson et al, in a cadaveric study,
demonstrated that changes in the overhead athlete can be
attributed to the posterior capsule. In patients with persis-
tent disability, surgical release of the posterior capsule has
been shown to relieve pain.44

In prior studies, GH and ST motions were not quanti-
fied. Evidence suggests that impingement results from
dysfunction in both the GH and ST joints.14,24,43 Biome-
chanical investigations have shown that the position of the
scapula is as important as soft tissue mobility in subacro-
mial impingement.30

It is important to understand the interplay between
scapulothoracic motion and rotator cuff pathology because
it has important clinical implications as a result of the
high incidence of shoulder-related injury and morbidity.
Similarly, its treatment and prevention have significant
economic consequences. No previous study has clearly
demonstrated the cause-effect relationship between poster-
ior capsular contracture and subacromial impingement
because of improper methodology or experimental setting.
Unfortunately, investigations well-positioned to research
this problem have inconclusive results because by violating
the joint capsule when manipulating the rotator cuff, the
negative pressure within the GH joint is released, which
disrupts the GH ligaments and thus alters GH and scapulo-
thoracic kinematics.4,15,16,25,28 Not only does this methodo-
logy alter the intricate interaction of the GH ligaments
during motion, it decompresses the stabilizing benefit of
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Figure 1. Illustrations of the actual testing system with the (A) infrared (IR) cameras and (B) lower and upper frames.
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concavity compression and it subjugates the GH motion
with the effects of gravity. Additionally, manual manipula-
tion of the shoulder during testing can introduce variabil-
ity, and discontinuous motion analysis can lead to
significant artifact and error.

In this investigation, the effect of posterior capsular con-
tracture during passive ABD of an intact cadaveric
shoulder was investigated through a simulated plication.
GH kinematics, humeral load, and subacromial contact
pressure were evaluated in normal and diseased states
using a validated robotic apparatus with 7 degrees of free-
dom (DoF)8,41 to mediate reproducible motion trajectories
of the upper extremity. Using this system, we hypothesized
that a posterior capsular contracture would increase hum-
eral load, increase subacromial contact pressure, and shift
the center of GH motion anteriorly and superiorly.

METHODS

Testing Apparatus

A previously validated upper extremity testing system was
used to evaluate each specimen.8,41 This automated appa-
ratus has precise control and renders a highly reproducible
pattern of motion with 7 DoF while recording GH motion,
humeral load, and subacromial contact pressure continu-
ously.8 The system consists of a lower frame that houses the
cadaveric specimen and an upper frame to which the limb is
attached (Figure 1). In this investigation, the lower frame
rigidly fixed the scapula while the upper frame was pro-
grammed to create passive ABD. All axes employ actuator
motion and can be programmed using a central controller
to generate any motion trajectory within the system’s
limits.8,41

Cadaveric Torsos

Six fresh-frozen left shoulders were obtained (Medcure
Anatomical Tissue Bank) and inspected for rotator cuff
integrity and associated morbidities. The specimens origi-
nated from white males, 61 ± 5 years of age, with a mean
height of 180 ± 10 cm and mean body mass index of 20.14 ±
5.35 kg/m2. All specimens were thawed at room temperature
2 days prior to testing. On the day of testing, the skin, subcu-
taneous fat,anddeltoidmusclewereremoved,as described by
Hartzler et al.13 Each specimen was mounted rigidly
through the body of the scapula. Retroreflective marker
clusters were rigidly mounted in the humeral shaft and the
spine of the scapula using a validated protocol.8,41

Testing Procedures

For each specimen, ABD was tested in the plane of the
scapular body from 60� to 100� (40� range) (Figure 2).
Three repetitions of ABD were performed to establish a
baseline for GH motion, humeral load, and subacromial
contact pressure. The posterior capsule was plicated, and
3 additional repetitions of ABD were performed to model
the plicated state. Throughout testing, the specimens

were kept moist with physiologic 0.9% saline. No resting
time was present between repetitions to limit hysteresis.

Posterior Plication

A posterior plication was created using the technique
described by Muraki et al.34 In brief, a 3� 3–cm square was
created on the posterior shoulder approximately 1 cm med-
ial to the tendon’s insertion and 1 cm below the posterior
edge of the acromion by internally and externally rotating
the humerus. With the arm in neutral rotation, the capsule
was imbricated using a No. 5 Ethibond suture (Ethicon US)
with a 48-mm conventional cutting sternal needle.33

Motion Analysis

Five Qualisys Pro Reflex (Qualisys AB) high-speed cam-
eras (120 Hz) were used to record the motion of the retro-
reflective, bone-embedded marker clusters as previously
reported.31,32 Prior to testing, the cameras underwent a
multiaspect calibration resulting in a spatial resolution
of 0.043 m. Anatomical landmarks were used to calibrate
the reference frame with respect to the technical (bone-
embedded) marker clusters using a pointed wand in accor-
dance with International Society of Biomechanics (ISB)

Figure 2. Range of motion of the abduction motion segment.
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guidelines.49 The calibrated scapular landmarks were cal-
culated as outlined by Meskers et al26 to determine the
instant center of rotation of the GH joint (CORGH) within
the scapular reference system. The 0 point was defined as
the location of CORGH with the arm hanging at the torso’s
side. The exact angle of shoulder ABD (arm position) was
recorded as an independent variable using a digital inclin-
ometer (US Digital).

Humeral Load and Subacromial
Contact Pressure Analysis

A nano-25, 6-DoF load cell (ATI Industrial Automation) was
mounted between the cut end of the humerus and the actua-
tor arm (upper frame) to measure the humeral load in all 3
axes (Figure 3). Data acquisition was performed using Lab-
View (National Instruments) at a sampling rate at of 10 Hz.

A pressure transducer film (model 5051; Tekscan Inc)
was used to measure contact pressure in the subacromial
space. The film was calibrated and then placed on the
undersurface of the coracoacromial arch from the coracoid
process anteriorly to the posterior edge of the acromion.
The film was inserted from the lateral aspect of the acro-
mion (50-yard line) and was sutured to the coracoacromial
ligament and the periosteum on the posterior edge of the
acromion.

Statistical Analysis

The Shapiro-Wilk test was used to assess the data for nor-
mality. GH translation, humeral load, and contact pressure
were recorded continuously throughout the 3 repetitions of

ABD for baseline and plicated. The average GH translation
was plotted over time to calculate the total translation and
the area under the curve (AUC) during each motion seg-
ment. The motion was divided into five 10� segments (60�,
70�, 80�, 90�, and 100�) to facilitate statistical analysis. A
linear mixed model analysis of variance was conducted for
x-, y-, and z-axis translations, where the sample was the
repeated effect and the group and angle were fixed. AUC
was calculated for each condition on each axis using
the trapezoidal rule to appropriately assess the path-
dependent motion (Matlab version 12; MathWorks). The
Wilcoxon signed-rank test was used to compare AUCs
between conditions. Statistical analysis was conducted
using SPSS (version 21.0; IBM). Two-tailed P values of
<.05 were considered statistically significant.

RESULTS

Humeral Load (Load Cell)

Posterior plication decreased the posterior and increased the
anterior force on the humerus when the arm was abducted
to 90� compared with baseline (P ¼ .04) (Figure 4A and
Table 1). At all other positions, the anteroposterior moment
showed no statistical difference (P > .05 at 60�, 70�, 80�, and
100�) (Figure 4A and Table 1). In comparison with the nor-
mal shoulder, the posterior suture plication increased the
superior load on the humerus throughout ABD (P < .001 at
60�, 70�, 80�, 90�, and 100�) (Figure 4B and Table 1). In the
load cell z-axis (medial-lateral), the force on the humerus
was significantly lower at 70�, 80�, and 90� of ABD when
compared with baseline (P < .001) (Figure 4C and Table 1).

Figure 3. Orientation of the specimens and the load cell coordinates (the axes for the 6–degree of freedom [DoF] load cell with the
negative x-axis going into the plane). The load cell axes are shown in the negative direction, as they highlight forces in compression
(tension in positive direction).
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Figure 4. Load cell versus arm position for (A) x, (B) y, and (C) z planes between 60� and 100� of abduction. Comp., compression.

TABLE 1
Load Cell, Tekscan Contact Pressure, and Glenohumeral Center of Rotation Displacement Data

for the Control and Plicated Groupsa

Normal, Mean ± SD Plicated, Mean ± SD Delta P Value

Load cell x, N
60 –0.27 ± 7.20 –4.56 ± 5.63 –4.29 >.05
70� 3.13 ± 7.09 –1.53 ± 6.08 –4.65 >.05
80� 2.04 ± 7.09 –3.51 ± 6.52 –5.55 >.05
90� 3.84 ± 7.07 –3.87 ± 7.47 –7.72 .04
100� 0.01 ± 6.19 12.12 ± 5.88 12.11 >.05

Load cell y, N
60� –11.84 ± 5.72 10.67 ± 8.65 22.50 <.001
70� –13.00 ± 5.27 8.2 ± 6.52 21.20 <.001
80� –12.73 ± 5.23 8.50 ± 7.01 21.23 <.001
90� –14.00 ± 4.89 8.63 ± 6.40 22.63 <.001
100� –13.86 ± 5.46 16.62 ± 8.38 30.48 <.001

Load cell z, N
60� 11.66 ± 6.69 –9.57 ± 13.51 –21.23 >.05
70� 18.29 ± 7.94 –18.41 ± 11.56 –36.70 <.001
80� 24.65 ± 10.11 –15.02 ± 8.93 –39.67 <.001
90� 35.65 ± 10.09 1.41 ± 10.71 –34.24 <.001
100� 52.50 ± 8.92 34.64 ± 11.12 –17.86 >.05

CONT press, N
60� 1.03 ± 0.19 1.03 ± 0.21 0.01 >.05
70� 0.83 ± 0.14 0.75 ± 0.13 –0.08 >.05
80� 0.69 ± 0.10 0.62 ± 0.08 –0.07 >.05
90� 0.81 ± 0.12 0.76 ± 0.12 –0.05 >.05
100� 0.88 ± 0.11 0.88 ± 0.17 0.00 >.05

CORGH, x, mm
60� –0.00 ± 0.31 –0.04 ± 0.25 –0.04 >.05
70� –1.10 ± 0.53 –1.20 ± 0.57 –0.10 >.05
80� –1.14 ± 0.56 –1.74 ± 0.90 –0.61 >.05
90� –1.56 ± 0.99 –2.05 ± 0.95 –0.49 >.05
100� –1.82 ± 1.01 –1.99 ± 1.07 –0.18 >.05

CORGH, y, mm
60� –0.42 ± 0.47 –0.51 ± 0.37 –0.09 >.05
70� –0.58 ± 1.12 –0.72 ± 1.12 –0.15 >.05
80� –1.13 ± 2.00 –2.47 ± 1.88 –1.34 >.05
90� –1.68 ± 2.61 –2.96 ± 2.48 –1.28 >.05
100� –1.71 ± 2.68 –2.56 ± 2.65 –0.85 >.05

CORGH, z, mm
60� –0.28 ± 0.10 –0.29 ± 0.39 –0.01 >.05
70� –2.98 ± 0.74 –3.20 ± 1.11 –0.22 >.05
80� –5.14 ± 1.07 –5.33 ± 1.89 –0.19 >.05
90� –7.03 ± 1.74 –7.61 ± 2.50 –0.58 >.05
100� –0.80 ± 1.82 –8.53 ± 2.65 –0.73 .01

aCONT press, Tekscan contact pressure; CORGH, glenohumeral center of rotation.
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Subacromial Contact Pressure (Tekscan)

There was no change in the subacromial contact pressure
during ABD following posterior plication in the intact
shoulder (Figure 5 and Table 1).

Glenohumeral Kinematics
(QUALYSIS Motion Capture System)

The posterior soft tissue plication did not significantly alter
GH kinematics during passive ABD when examining an
intact shoulder (Figure 6, A and B, and Table 1). The plica-
tion did result in a small increase (<1 mm) in superior
translation that was statistically different at 100� of ABD
(P ¼ .01) (Figure 6C and Table 1). However, given the effect
size of this change, its clinical relevance is uncertain.

Using an AUC analysis, plication did not affect the
motion trajectory when compared with the baseline condi-
tion for all 3 axes (P ¼ .26, .84, and .88 for x-, y-, and z-axes,
respectively) (Table 2).

All data were normally distributed, as assessed by the
Shapiro-Wilk test (P > .05 for all cases).

DISCUSSION

Subacromial impingement is the most common disorder of
the shoulder, accounting for 44% to 65% of all shoulder com-
plaints.45 When a posterior capsular contracture is present,
internal rotation and ABD are limited. This change is
believed to increase anterior and superior GH translation
resulting in an increase in the subacromial contact pres-
sure. We sought to quantify the effect of a posterior capsu-
lar contracture on subacromial contact pressure and GH
kinematics during passive ABD of an intact cadaveric
shoulder using an automated testing apparatus.12,20,23

While prior cadaveric studies have described an increase
in subacromial contact during passive shoulder ABD and
external rotation,2,3,9 these changes were not observed in
an intact cadaveric shoulder. This discrepancy may high-
light the importance of the joint capsule’s integrity and the
joint’s negative intra-articular pressure during cadaveric
assessment of GH motion. Additionally, the difference may
result from our use of an automated robotic system with
continuous, real-time data collection. Interestingly, the
humeral loading and kinematic data correspond to the in
vivo behavior of the normal shoulder at baseline1,47 and the
changes in humeral loading after the posterior soft tissue
plication mirror that has been described during active joint
motion.48 Werner et al46 found that these changes did not
significantly alter GH translations during ABD.

Our results do not demonstrate a significant change
in GH motion or subacromial contact pressure following
posterior plication. In contrast to the results published by
Poitras et al,39 Mihata et al,29 and Peltier et al,38 our study
showed a significant decrease in the superior displace-
ment in the sagittal plane at 100� of ABD, while the center
of contact and the magnitude of the contact pressure in the
subacromial space before and after capsular plication
demonstrated no discernible changes.

The forces experienced at the load cell are measurements
of the end-effector forces that are intrinsically related to the
capsular integrity of the GH joint and thus provide a repre-
sentation of the forces experienced at the humeral head.
Our results demonstrate significant decrease in anterior
and lateral forces measured at the load cell in the
anterior-posterior and medial-lateral directions during
ABD, suggesting increased compression, or load, at articu-
lation (Figure 4, A-C). Plication resulted in a significant
increase in axial load throughout ABD (Figure 4B).

Measuring subacromial contact pressure during ABD is
an effective proxy for simulating shoulder impinge-
ment.17,35,37,39,46,50,51 Interestingly, the posterior capsular
plication resulted in no significant difference in subacro-
mial contact pressure. While there was a maximum at 60�

and 100� of ABD—the beginning and end of the motion—
the contact pressure decreased until it reached a minimum
at 80� before climbing again to 100�. This trend may illus-
trate the interplay of the humeral head’s ovoid geometry
the ABD angle and subacromial pressure.

Similarly, Poitras et al39 found that tightening the pos-
terior capsule did not increase the subacromial contact
pressure when loaded in discrete static steps. While our
data were captured continuously, the findings are consis-
tent with their claim that increased tightness of the poster-
ior capsule does not cause an increase in subacromial
contact pressure when the scapula is fixed (rigid).

As with any cadaveric model, this study has limitations.
First, 6 shoulders represents a relatively small sample
size. Despite this shortcoming, the observed trends in con-
tact pressures and compressional forces were present
throughout, as was the absolute displacement relative to
arm position. In this study, 6 healthy, male, left shoulders
were evaluated, but comparisons were not made to the
contralateral limb. In the literature, 6 specimens have
provided adequate insight.1,7,36

Second, the precision of the measurements of the GH
displacement depends on the reliability of the specimen’s
calibration. Because this process highlights individual ana-
tomic landmarks on each specimen, there is inherent

Figure 5. Subacromial pressure versus arm position between
60� and 100� of abduction.
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variability because they are landmarks rather than dis-
crete points.6 The cadaveric shoulders offer a representa-
tion of the material and mechanical characteristics
observed in vivo.27

With the scapula rigidly fixed, each specimen’s range of
motion was limited 40� of ABD. While the model affords the
opportunity to examine various motion patterns, this inves-
tigation focused on ABD to best understand the interplay of
GH motion, scapular kinematics, and subacromial impinge-
ment. Moreover, the effects of rotator cuff forces were not
replicated in this passive model. Their relevance in extreme
ranges of motion has not been questioned.21 The results and
conclusions of this study should be interpreted with cau-
tion. Our system is capable of simulating gross motion
through elevation, rotation, and spatial translation of ana-
tomical landmarks. However, in vivo ABD represents a
complex interaction of muscles acting over various joints
in concert, making the individual contributions of various
factors difficult to predict. However, this testing system
offers a model of ABD that accurately represents the cur-
rent clinical test for impingement.

Future investigations would benefit from dynamic rota-
tor cuff loading during ABD as well as controlled scapu-
lothoracic motion. These additions may help provide a
comprehensive understanding of shoulder kinematics by
more accurately simulating in vivo motion.

In this study, the scapula was rigidly held to isolate GH
motion during ABD of the humerus. Posterior soft tissue

plication did not alter GH motion and, as a result, no sig-
nificant change in subacromial contact pressure was
observed. Suture plication constrained the joint’s motion,
drawing the humeral head closer to the glenoid, increasing
the load at the articulation (Figure 4C). These findings
suggest that a posterior capsular contracture may cause
increased subacromial contact pressure (impingement) due
to compensatory change in scapulothoracic motion rather
than a change in GH motion. Future studies with an intact
shoulder and mobile scapula are needed to address this
concern.

This investigation demonstrates that posterior capsular
plication increases the axial load on the shoulder joint dur-
ing ABD. While a significant difference from baseline was
observed in the plicated condition, posterior capsular plica-
tion did not change GH motion or subacromial contact
pressure significantly. In future studies, the effects of phy-
siologically relevant peripheral musculoskeletal forces may
offer greater insight into how a posterior capsular plication
changes the shoulder’s motion to increase subacromial
forces. Clinicians will benefit from this understanding of
GH mechanics, which will help patients with shoulder pain
and outlet impingement.
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