During the surgical rotation of her third year in medical school at the University of California, San Francisco (UCSF), Jennifer Tseng, M.D., M.P.H., met a doctor who would change her life. This physician, however, was not a faculty member or a peer student, but a patient lying in the hospital bed riddled with metastatic pancreatic cancer. A pathologist, he had flown up to UCSF to undergo a complex surgery called a Whipple to remove the tumor, only to wake up from the anesthesia to find that they got as far as an exploratory procedure to discover the cancer had spread. As a doctor, he knew this was a death sentence. “So they talked about where he would have dinner that night,” Tseng recalls of the moment the lead surgeon met with him post-operatively, “because the unspoken context was there was nothing else they could talk about. And I found that incredibly frustrating. As a student, you’re all geared up to see this great case but then you realize, it’s not really about the case, it’s about the patient, that individual patient and the problem. And something about that clicked in my brain.”

That click led Tseng, now chief of surgical oncology at Beth Israel Deaconess Medical Center, to dedicate her career to the improved treatment of pancreatic and other upper gastrointestinal (GI) cancers despite—or perhaps because of—the fact that they can be some of the most difficult cancers to treat. Often striking in the prime of life, pancreatic cancer has the lowest
Jennifer Tseng, M.D., M.P.H.

Continued from p. 1

five-year relative survival rate of all major cancers at just 6 percent, with 73 percent of patients dying within the first year of diagnosis. “I’ve always liked hard problems,” says Tseng. “I’ve always liked to spend time with people who are undergoing crises or turmoil in their lives and trying to make a difference at times when it seems like the intervention actually can help. And even if you don’t save every person, I think if you’ve tried and they know that you’ve tried, that’s something that resonates with me.”

A surgeon by trade, Tseng knows that her field remains an integral component of treating most cancers and has been an advocate for ensuring that surgeons are at the decision-making table in her role as clinical co-director for surgery at BIDMC’s Cancer Center. But, when it comes to a disease as complex as pancreatic cancer, Tseng is also humbly cognizant of surgery’s limitations, noting that she considers herself a surgeon only after being a person first and a doctor second in her personal clinical hierarchy. “I like surgery. Surgery is fun. Surgery is dramatic,” she says. “But it’s just a tool. If you’re a hammer and the whole world looks like a nail, then you’re not going to realize when the hammer’s not going to work. I would be delighted for surgery to become completely unnecessary for pancreatic cancer.”

Tseng knows that making cancer surgery obsolete will require not only embracing the importance of all the areas in cancer care that exist today but also ensuring that there are a lot more alternatives in the toolbox in the future. “Surgeons have been taking excellent care of cancer patients for a long time, but now in the 21st century, we realize that we must have a respect for all the other disciplines,” she says. “Of course, you don’t want to be diffuse either. But you need to learn that you subspecialize in certain things to have an understanding, an empathy, for these other fields, enough not to be dangerous but to be respectful—that’s what is helpful to patients.” Tseng says that this inclusive approach to care, which has been an integral component of BIDMC’s cancer practice for decades, is something she and her colleagues are trying to build on across the board at the Cancer Center. In her own specialty, she has been working with A. James Moser, M.D., director of the Institute for Hepatobiliary and Pancreatic Surgery, in his effort to establish a multidisciplinary conference in pancreatic cancer as well as multidisciplinary clinic for the disease. In bringing this collaborative approach to pancreatic cancer to fruition, Tseng especially credits Mark Callery, M.D., chief of general surgery, as well as other leaders in gastroenterology, GI medical oncology, radiology, radiation oncology, palliative care, pathology, genetics, nursing, and nutrition. “These are thrilling times, because that way we can have all the...
Giving Matters | www.bidmc.org/giving

by providing her with productive clinicians and researcher, not only but Tseng says her training in the background may seem an anomaly, in partnership with the Massachusetts interest that she is now expanding and outcomes, a longtime personal societal lens, she is looking at what radiation, and more. And through the sequence of treatments, which now may include surgery, chemotherapy, and radiation, and more. And through the societal lens, she is looking at what might cause disparities in cancer care and outcomes, a longtime personal interest that she is now expanding in partnership with the Massachusetts Department of Public Health. A surgeon with a public health background may seem an anomaly, but Tseng says her training in the subject has made her a more effective clinician and researcher, not only by providing her with productive collaborations and biostatistical proficiencies, but also by literally broadening her horizons. “In the old days, surgeons tried to change the world one patient at a time,” says Tseng. “And I think that will always have to be done. If you don’t have that individual relationship with a patient, you will never have that personal perspective to really affect policy. But on another level, for me at least, is the ability to understand on a macro level how these things occur. The most holistic way that a public health degree has helped me, and continues to help me, is just an understanding that every individual, whether it’s an individual person or an individual disease, does not exist in a vacuum.”

Although it might seem that she can do just about anything herself, Tseng is quick to point out that she doesn’t exist in a vacuum either, surrounding herself with people who have similar passions but differing skills to cover every angle of a clinical or scientific challenge. “I think what I’m really good at is identifying other people that are really good,” she laughs. “I think my strength is being able to see that certain something in other people, whether it’s a secretary or a student or a trainee, and then trying to help them, as best I can, be their best selves.” In that vein, Tseng gets most excited talking about her mentoring relationships with young physician-scientists, stressing that it would be in this pool that she would pour the majority of philanthropic support that came her way. She sees investment in early-career talent—from small fellowships all the way up to creating an educational institute—as a fruitful and forward-thinking way to advance all that she is trying to accomplish. “I will try my whole life to beat cancer, on an individual level, on a division level, on an institutional level,” says Tseng. “But I’m one person. That being said, if I can multiply that through the course of my career through trainees and mentees, then I will have achieved 100 times more than what I could do as an individual. So it’s from them that I will have that legacy.”

Tseng hopes that her legacy will be that the medical students in the future won’t need to encounter, as she did, patients who have to accept their pancreatic cancer as a death sentence. She wants them to experience, more and more, the grace and inspiration that she has been privileged to witness in her patients who have survived. Tseng stresses that with increasing donor support of efforts to gain understanding of the effect of disparities in health care delivery and to augment the technological advances in minimally invasive surgery and cellular-based, targeted therapies, she sees a glimmer of hope that things are moving in that direction. While she has been highly successful in obtaining funding from comparatively conservative sources such as the National Institutes of Health, the Howard Hughes Medical Institute, and the American Cancer Society, Tseng says that partnering with more adventurous individual philanthropists is not only more personally inspiring but will be essential to making the high-risk, high-yield proposition of “curing the incurable” a reality. “We haven’t won the war yet, but we’re poised on that brink of being able to truly make big changes in cancer,” she says. “The next decade is going to be the time when we actually make these bad cancers into submissive, beatable diseases. I really feel it.”

Give today with your IRA
Rollover Law Offers Tax-Free Gifts to BIDMC in 2013

Congress recently revived the legislation that allows direct, tax-free transfers to BIDMC from IRA accounts during 2013. These IRA Rollover gifts can be used to fulfill an existing pledge, make an annual donation, or simply provide a one-time contribution to the medical center.

There’s never been a better time to make a gift to BIDMC—the IRA Rollover expires on December 31, 2013. Act now!

THE IMPORTANT FACTS:
• Individuals who are 70½ and older may take advantage of this opportunity.
• Gifts to BIDMC of up to $100,000 can be made in 2013.
• The IRA withdrawal is tax-free.
• These gifts should be made directly from an IRA to the medical center.
• An individual is not eligible for a charitable income tax deduction for these gifts.

For more information, please contact:
Greta Morgan at (617) 667-7395 or gmorgan@bidmc.harvard.edu, or visit us online at www.bidmc.org/plannedgiving.
Dear Readers,

Last spring, unspeakable tragedy gripped our city. But the actions that followed the Boston Marathon bombings, both by the first responders on Boylston Street and at the hospitals, showed the strength and character of this great city. This issue of Giving Matters highlights the remarkable action at Beth Israel Deaconess Medical Center in the hours, days, and weeks that followed that event. Administrators and caregivers who were on the front lines recap BIDMC’s response to the bombings and the aftermath (page 6), and Richard Wolfe explains how the Emergency Department is always prepared for a surge of patients from a mass casualty event (page 8). We also celebrate the runners of the BIDMC Boston Marathon Team, who raised more than $90,000 to support medical center programs and vow to run again next year (page 9).

While letters, gifts, and support poured in from across the country, one of the most unique gestures came from Tom and Midge DeSimone, who sent members of the Department of Social Work on a duck boat tour of Boston to hopefully relieve some stress of that time (page 8).

We were at our best in the face of this extraordinary crisis, but at BIDMC, we provide this level of coordinated, compassionate care on a daily basis. A lot of that work happens because of you. I am pleased to report that in fiscal year 2013, which ended on September 30, BIDMC raised more than $50 million in philanthropic contributions, the highest single-year fundraising total in the medical center’s history. So thank you for all that you do.

Best,

Kristine Laping

Mail that Matters

While saying thank you can come in many forms, one of our favorites is receiving letters from our patients and their families. Many have shared uplifting and heart-warming stories of their time at BIDMC and the staff who cared for them. We are pleased to print some of these letters in Giving Matters and encourage you to contribute your own stories.

To share your story, e-mail us at development@bidmc.harvard.edu or write to “Mail that Matters” at the Office of Development, 330 Brookline Avenue (BR), Boston, MA 02215.
Despite the natural marketing appeal of their surname in business, Shirley and Stanley Charm, Sc.D., have little interest in seeing it up in lights when it comes to their philanthropy. So when they recently made a $250,000 contribution to BIDMC, the Charms focused less on widespread visibility and more on widespread impact, choosing an area of health care that often remains behind the scenes notwithstanding its importance. “When we decided to make a donation, a gift, to the hospital, we were searching for something that would resonate with us,” says Shirley. “We wanted a kind of living gift in that the money could be used to be constructive, to make a difference.”

In the end, the Charms lit upon an area not only near and dear to their hearts but one in which BIDMC is rapidly making a mark—infection control. Building on Stanley’s invention of the first rapid antibiotic test for milk, the couple founded Charm Sciences Inc., Lawrence/Andover, in the late 1970s, which has since become a leading supplier of food safety, water quality, and environmental diagnostics around the globe. The parallels to health care are readily apparent. “Just as you can’t afford to recall your product in the food industry, you certainly can’t afford to recall your patients in the hospital,” says Shirley, noting that time constraints and antibiotic resistance are added complexities in the medical environment.

Finding creative and scientifically evaluated ways to prevent hospital readmissions and reduce health care–associated infections are an integral part of the mission of BIDMC’s Center for Healthcare Delivery Science. The Charms’ gift will support a new innovation fund at the Center, which will provide discretionary funding to investigators working on pilot projects in areas like infection control, hygiene management, and other quality improvement efforts. “I feel confident that we can definitely make advances that can help this field,” says Stanley. “It’s not a complex concept, but it takes hard work and it takes money.”

And the Charms have done their part not only by helping to fill the funding gap but by taking on some of the hard work as well, sharing their own long-standing expertise in sanitation science with the Center’s staff. As a result, they have built beneficial working relationships with Kenneth Sands, M.D., M.P.H., senior vice president for health care quality, and Sharon Wright, M.D., M.P.H., director of infection control and hospital epidemiology. This added personal touch to their gift is only fitting to Stanley, who has been a “customer” of Beth Israel Hospital and BIDMC since the 1930s and has served on the Board of Overseers and the Audit Committee. “We know you,” he says of the hospital. “You have good people, and you do good work.”

“I feel confident that we can definitely make advances that can help this field.”
—Stanley Charm, Sc.D.
The first bomb on Boylston Street went off at 2:49 p.m. It was change of shift at Beth Israel Deaconess Medical Center, which, despite the Patriot’s Day holiday, was well staffed to manage a surge of patients from the Boston Marathon.

However, the patients who came through the door of the Berenson Emergency Department (ED) on that Monday afternoon were not the dehydrated runners they expected. Instead, it was one of the worst mass casualty events BIDMC has ever seen. In large part due to rigorous disaster training, when the first victims of the Boston Marathon bombing came through the doors only 11 minutes later, the staff at BIDMC was poised and ready. “Patients were coming in two and three at a time,” recalls Alok Gupta, M.D., acute care surgeon and surgical incident commander. “We got seven patients over the course of four minutes.”

Twenty-four victims were admitted to BIDMC, 14 of whom were critically injured, including six who were sent within the first hour to the operating room (OR) as a result of their injuries. In the ED, emergency physicians and nurses immediately assessed and coordinated the incoming patients at the door and systematically distributed them to the available resources based on individual needs. “We train a lot,” says Meg Femino, director of emergency management. “I think Beth Israel Deaconess probably drills more than any other hospital in the state to improve our disaster operation plans and also to build up pattern recognition in staff. What made it go so smoothly was that we had practiced this before. They knew what they were supposed to do, and they fell into their roles.” Despite the severities of the injuries, every single victim who was treated at a hospital survived.

Within three hours of the bombings, the 24 patients were organized into a Mass Casualty Service. The unique decision not to incorporate the victims into the regular trauma service helped caregivers recognize that patients had similar needs for physical therapists, psychologists, social workers, and chaplain services. A team of 40 clinician and non-clinician staff volunteered to form the multidisciplinary team which streamlined the patients’ care and evolved with their needs, focusing not only on their physical ailments but also on their mental well-being. “It is a very delicate balance with any patient, but with families that are dealing with that kind of crisis, you need to be very gentle with the way you are helping them to contain and express what they need,” says Julia Dunbar, former director of the Department of Pastoral Care and Education.

While caregivers were concentrated on their patients, the world turned its eyes to Boston. “It was unusual compared to any other incident or disaster I have had to manage,” says Marsha Maurer, R.N., chief nursing officer and event incident commander. “The emergency aspect, which was so intense, was over within three hours. But there was a series of unfolding events over the next week that added a whole other layer of complexity.” As the city came to grips with the tragedy, the medical center managed overwhelming media requests, dignitary visits, and law enforcement presence. The spotlight intensified later
in the week as both suspects were treated at BIDMC. “Whether someone is a victim or a suspect, everyone gets the same standard of care, and I think we carried that out,” Gupta says.

As the healing process continues, the medical center remains committed to caring for the mental and physical well-being of these victims. The events of that day and the days that followed forever changed the lives of those involved—not only the victims, but also the caregivers and staff, many of whom had never been exposed to such disaster. “We were at our best,” Dunbar says. “Despite the chaos, despite everything, we were really all at our very best. And that says a lot about who we are as a hospital and as a community.”

For more information on how to support both the immediate and longer-term needs of patients, families, and caretakers impacted by such devastating, life-altering events through the BIDMC Emergency Relief Fund, please visit www.bidmc.org/Give-to-BIDMC/BostonMarathon.

TIMELINE OF EVENTS

MONDAY, APRIL 15, 2013
- 2:49 P.M.: First explosion at Boston Marathon finish line
- 2:50 P.M.: Berenson Emergency Department received notification from the city
- 3:00 P.M.: First patient arrived in the Emergency Department
- 3:45 P.M.: First case in the operating room; six operating rooms running within the hour; 14 patients treated in the operating rooms; 50 unscheduled operating room staff arrived without being called
- 7:40 P.M.: Last wave of outpatients discharged from the Emergency Department

TUESDAY, APRIL 16, 2013
- Call received from Governor Deval Patrick
- Support resources available to staff
- New interdisciplinary trauma service initiated

WEDNESDAY, APRIL 17, 2013
- Staff support groups held on east and west campuses
- Governor Deval Patrick and Secretary John Polanowicz visit BIDMC patients and staff
- Many media sources contact BIDMC requesting interviews with victims and families

THURSDAY, APRIL 18, 2013
- 13 victims remain at BIDMC
- More than 100 BIDMC staff attend interfaith service at Cathedral of the Holy Cross

FRIDAY, APRIL 19, 2013
- 1:35 A.M.: Suspect #1 dies at BIDMC; security increased
- 5:30 A.M.: MBTA suspended
- 8:20 A.M.: Lock down at BIDMC
- 4:00 P.M.: Travel restriction lifted
- 11:59 P.M.: Notification to staff that suspect #2 brought to BIDMC for treatment

SATURDAY, APRIL 20, 2013
- Three BIDMC employees and one victim honored at Red Sox game

SUNDAY, APRIL 21, 2013
- Senator Elizabeth Warren and amputee veterans visit BIDMC

MONDAY, APRIL 22, 2013
- 12:30 P.M.: Suspect #2 arraigned at bedside
- 2:49 P.M.: Moment of silence observed throughout BIDMC

TUESDAY, APRIL 23, 2013
- Red Sox players visit BIDMC patients and staff
- Most victims have been discharged

MONDAY, JUNE 3
- The last bombing victim, Erika Brannock, is released from BIDMC
Faces of BIDMC

with Richard Wolfe, M.D.

Richard Wolfe, M.D., and his staff were on the front lines in the Berenson Emergency Department (ED) following the Boston Marathon bombings. In the face of chaos, his team was well-prepared to manage the surge of patients and provide the best care possible to 24 of the critically injured victims. Since arriving in 1999, Wolfe has built a strong emergency program that not only provides care to 55,000 patients per year but also conducts research on acute illness and various public health issues.

What is it about emergency medicine that interests you?

It’s probably one of the specialties where diagnosis is premier. Patients present undifferentiated, and you have very little time to use a minimal amount of information to sort out the underlying diagnosis and initiate lifesaving therapy. It is a very high-adrenaline, fast-paced specialty with a broad spectrum of interesting diagnostic challenges. It feels very useful because you actually often save lives. Also, there is a focus on the unstable condition of our patients, which is where most of our research takes place.

How well were you prepared for the surge of patients following the Boston Marathon bombings?

Emergency medicine is about not knowing what is coming in the door at any minute. You are always set up to deal with traumas. We carved up the ED into multiple trauma units that were each set to handle a certain number of victims so that when a wave hit, we were ready to bring them in quickly, do that initial trauma assessment, and go upstairs to the ORs. But we were lucky. The bombs went off in the middle of a holiday right next to a tent of providers including people trained in disaster. They were close to six major trauma centers that were ready for a surge of patients, and there was easy ambulance access because the roads were cleared for the Marathon. Because it was a holiday, the hospital ORs and the ED were not very busy. The bad news is what if it had been a more intelligently designed bomb, placed at a more intelligent place, at a far worse time.

Not only did you have the 24 victims, you also received both suspects. Was that difficult?

At the time, nobody was even thinking about it. You go into problem-solving mode and do what it takes to take care of the patient. We are not here to pass judgment. We are here to provide care. By taking on one shift in the Emergency Department, we have agreed to take care of anyone who walks through that door, regardless of who they are. We will not discriminate in any way, shape, or form. It is so inbred that you don’t necessarily verbalize or even think it. It is an automatic reflex.

How could philanthropy help what you are trying to do?

Our biggest problem is space constraint. We need, during surge times, to be able to care for more patients so that nobody is required to wait. We also want to bring the level of emergency care we provide at BIDMC into the community. We are building new urgent care facilities in Chestnut Hill and Dedham, but to provide that type of care, we need to have the same advanced imaging technology that we have at the medical center.
IN THE LONG RUN

ON APRIL 15, 13 MEN AND WOMEN ON THE BIDMC BOSTON MARATHON TEAM SET OFF FROM HOPKINTON FOR THE 117TH AND MOST MEMORABLE RUNNING OF THIS ELITE RACE.

While the day was clouded by the tragic events at the finish line, most of their memories are filled with the excitement of the cheering crowds and the camaraderie of their fellow runners. This year, the BIDMC Boston Marathon Team raised more than $90,000 to support our efforts to eliminate health disparities, cure disease, improve patient care, and educate the next generation of clinicians. BIDMC is grateful to John Hancock Financial, whose generous gift of marathon numbers for the last four years has helped us raise more than $230,000 in support of community health. Special thanks also go to The Westin Hotel, which provided space where our runners and their families could meet up after the race.

Our marathon program’s success would not be possible without the tremendous efforts of our runners. Many are already looking ahead to next year to finish the race they started and continue to raise funds for BIDMC programs. The 2013 BIDMC Boston Marathon Team recently reflected on an experience that won’t soon be forgotten.

“I was only 40 or 50 yards from the finish line. Some families had many members hurt. I had a lot of family there, and nobody was hurt. I just feel incredibly lucky. I didn’t get to finish, and so it feels a little empty. I feel like I need to do it again to say I finished it.” TOD BRUBAKER

“I was thrilled to be part of the BIDMC Boston Marathon Team. For the past 20 years, my dad received wonderful care at BIDMC. This was a way for our family to show our thanks to BIDMC for keeping my dad alive. The 2013 Boston Marathon will be a memorable marathon for many reasons for all of us.” ROBIN MAXCY

“I am very grateful for the opportunity to run and be part of the BIDMC team which was raising money to benefit the research in my laboratory to help prevent and treat kidney disease. Kidney disease is a huge and growing problem in this country, and we need better solutions.” MARTIN POLLAK, M.D.

“I ran in honor of the residents at BIDMC. This is a great hospital for training doctors, and the young doctors who choose to train here are a great resource for this hospital. I knew that my residents were on the front lines that day, and that made me even more proud and committed to the work that we do here.” CARRIE TIBBLES, M.D.

“This year, I ran in honor of my friends and family who have suffered from cancer. Next year, I’ll run in honor of the victims of the bombings and the caregivers of our hospital that provided them with world-class care. I have never been so proud to be part of the BIDMC Team.” COREY McNULTY

“BIDMC holds a very special place in my heart. I received my education and training here, and I was given the opportunity to become a full-time employee. I was truly honored to represent BIDMC for its world-class care at the Boston Marathon.” JACKIE GATTONINI

“David Avigan, M.D.
Yair Hadar
Bill Nawn
Jennifer Joyce, R.N.
Susan Shook

David Avigan, M.D.
Yair Hadar
Bill Nawn
Jennifer Joyce, R.N.
Susan Shook
THE BEAUTY OF SLEEP

Early to bed, early to rise, makes a man healthy, wealthy, and wise. The 200-year-old adage got it right—almost. “I might change it to healthy, happy, and wise, but it is more than just an aphorism—it is a medical and scientific reality,” says Robert Stickgold, Ph.D., director of the Center for Sleep and Cognition at Beth Israel Deaconess Medical Center. “You can’t be healthy, you can’t be happy, and you can’t be wise without adequate sleep.”

Sleep is one of the three pillars of health along with diet and exercise; however, we pay little attention to the nighttime activity when it comes to improving overall well-being. “I think sleep is overlooked,” says Janet Mullington, Ph.D., director of the Harvard Catalyst Clinical Research Center at BIDMC and president of the national Sleep Research Society. “There has been a lot of emphasis on nutrition and exercise, and we know that those are important for your heart and metabolic health, but sleep is very much related to the regulation of health maintenance systems as well.” In the last 20 years, with improvements in technology, data has shown that restricted or interrupted sleep can lead directly to health concerns such as obesity, diabetes, heart disease, hypertension, and cognitive and emotional dysfunction.

Researchers and clinicians at BIDMC are among the most prominent in the sleep field, and with generous philanthropic support from foundations such as The Periodic Breathing Foundation, LLC, American Heart Association, and Wake Up Narcolepsy, they are currently investigating new lines of inquiry that will change the way we view sleep and how we treat some of its most devastating diseases. “BIDMC has one of the leading sleep programs in the world,” says Clifford Saper, M.D., Ph.D., chief of the Department of Neurology. “There aren’t many other groups with as much firepower in the sleep field, and with generous philanthropic support from foundations such as The Periodic Breathing Foundation, LLC, American Heart Association, and Wake Up Narcolepsy, they are currently investigating new lines of inquiry that will change the way we view sleep and how we treat some of its most devastating diseases. “BIDMC has one of the leading sleep programs in the world,” says Clifford Saper, M.D., Ph.D., chief of the Department of Neurology. “There aren’t many other groups with as much firepower in the sleep field as we have here. It is really one of our greatest strengths.”

Clifford Saper, M.D., Ph.D.

While there are a number of sleep disorders, like narcolepsy, sleep apnea, and insomnia, that cause people to sleep less, one of the major causes of sleep loss is when people actively restrict their own sleep by staying up too late. When you stay awake for an extra hour in bed watching TV or reading e-mails on your iPad, you inadvertently throw off your circadian clock, which can have a devastating effect on your metabolism. “Your body has clocks all over the place, including in the tissues of the gut and the liver,” explains Clifford Saper, M.D., Ph.D., chief of the Department of Neurology and one of the foremost experts on circadian rhythm. “The clocks are aligned to metabolize food relatively efficiently. If you throw off the circadian clock, you misalign the times that you eat with the peak levels of your gut being ready to receive food and metabolize it.” When you do eat, your body is not prepared to use the sugar properly and results in an increase in blood glucose and ultimately a pre-diabetic state. Also, the sugar that is not metabolized is converted to fat.

Saper, a former president of the Sleep Research Society (SRS) and recipient of the 2012 Distinguished Scientist Award from the SRS, is investigating the circuity in the brain that regulates the way we cycle between wakefulness and sleep over the course of a day. He and his team recently published a controversial paper based on mouse model research, which hypothesized that disrupting the circadian clock was far more damaging to the metabolism than the loss of sleep alone. Understanding how sleep affects metabolism could have far-reaching implications for weight-loss techniques. “Currently, we are seeing an epidemic of obesity in our society, and we think that it is related to an epidemic of people restricting sleep,” he says. The Center for Mind-Brain Restoration at BIDMC is a leading clinical and research presence in the sleep field investigating ways to help people improve their health through better sleep. Saper says, “Support will allow us to bridge that gap between the basic animal experiments and clinical application.”
Tom Scammell, M.D.

A decade ago, little was known about narcolepsy, a sleep disorder characterized by lifelong sleepiness and cataplexy (brief episodes of muscle paralysis). “People with narcolepsy are tired every day—no matter how much sleep they get at night, no matter how good the quality of their sleep,” neurologist Tom Scammell, M.D., says of his patients. The extreme sleepiness impacts the ability to pay attention at school or work, in the car, and in social situations, while episodes of cataplexy affect quality of life. Between 2000 and 2005, Scammell and other researchers made a series of major breakthroughs when they demonstrated that the disorder is caused by the death of orexin-producing nerve cells in the hypothalamus. The orexins are signaling molecules that normally promote wakefulness and regulate rapid-eye movement (REM) sleep. In the absence of orexins, the wake-promoting brain regions are under-active, causing ill-timed transitions from wakefulness to sleep and intrusions into wakefulness of REM sleep elements, such as paralysis or hallucinations. These discoveries provided a target to further investigate the troublesome disorder.

Recently, Scammell uncovered new information that may have therapeutic potential for patients. He and his team found that narcolepsy patients have 94 percent more histamine-producing neurons than healthy patients. Histamine is a chemical that promotes wakefulness. Anti-histamine medications, like Benadryl, block histamine signaling in the brain and the result is often drowsiness. “We think that when the orexin neurons die, the histamine-producing neurons undergo a major change to produce more histamine,” says Scammell, who was named Researcher of the Year by the Narcolepsy Network in recognition of this new discovery. “We think it is a compensatory response, and the brain is doing its best to rebalance.” When narcolepsy begins in children, parents often notice an immediate and dramatic increase in their child’s sleep. Over the next several months, sleep then returns to normal amounts as the brain compensates for the neurological dysfunction. “I have no lack of patients with narcolepsy in my clinic, and seeing those patients informs us how to do better basic research to really drill in and understand what is going wrong in the brain and how can we fix it,” says Scammell, whose research has been funded by Wake Up Narcolepsy, a nonprofit organization focused on narcolepsy research and awareness. Drugs that enhance histamine signaling are already in development and could potentially improve the quality of life for thousands of narcolepsy patients worldwide.

Janet Mullington, Ph.D.

One of the more dangerous side effects of sleep deprivation or fragmented sleep is the impact it can have on your heart and vascular system. Research has shown that shortened sleep leads to an increased risk for the development of cardiovascular disease, including hypertension. At BIDMC’s Clinical Research Center, Janet Mullington, Ph.D., and her colleagues study the cardiovascular and immunologic effects of sleep loss in simulated real-life situations, such as five days of sleep restriction followed by two days of recovery sleep to mirror a typical work week.

Building on the established evidence that sleep loss increases blood pressure, particularly in individuals who already have elevated blood pressure, Mullington and her colleagues took a new approach. With support from the American Heart Association, they conducted a small pilot study to investigate the results of extended sleep on pre-hypertensive and hypertensive individuals. “A lot of people don’t want to take medication for their hypertension or would rather try a behavioral approach with diet and exercise,” says Mullington. “If we can add sleep to that approach, it is a very simple intervention that could help significantly.” Subjects who were able to extend their sleep for half an hour a night over six weeks saw a significant decrease in their blood pressure compared to those who maintained their normal sleep period.

The preliminary results of this research suggest future investigations might determine whether behavioral interventions are an effective strategy to treat hypertension, but additional support is necessary. “There are not always enough resources to fund the more exploratory or more exciting new initiatives,” says Mullington. “I think philanthropy can really help jump-start an area of translational science by helping provide resources where the logic is clear, but there’s not a lot of preliminary data.”

CONTINUED ON P. 12
Robert Thomas, M.D.

A decade ago, Robert Thomas, M.D., a sleep clinician and researcher in the Division of Pulmonary, Critical Care, and Sleep Medicine, noted that a number of sleep apnea patients in the BIDMC Sleep Disorders Clinic struggled with traditional therapies which were documented to be effective in the sleep laboratory. Sleep apnea may be caused by an obstructed airway, known as obstructive apnea, or by breathing rhythm abnormality, known as central apnea. Thomas’s patients did not fit perfectly into either category but showed patterns of respiratory control dysfunction during non-rapid eye movement (non-REM) sleep that were exaggerated by positive pressure treatment, which Thomas called “complex apnea.” In time, this entity has seen gradual acceptance, including FDA-approved therapies covered by insurers.

Thomas argued that these patients have a highly activated respiratory chemoreflex, which means that the breathing control system for sensing oxygen and carbon dioxide is too sensitive and causes fluctuations in breathing. In response, with generous support from The Periodic Breathing Foundation, the family foundation of grateful patient Robert Daly and his wife, Mary, Thomas and Daly developed a device to manipulate and control the carbon dioxide levels while using positive pressure to help stabilize breathing control in his patients.

Recently, however, he and Daly, who have continued to collaborate, wondered if this problem could be much larger, affecting patients not only at night while they sleep, but also during the day. “When your breathing control system is over-activated, there is higher blood pressure, faster heart rate, more anxiety, and more stress responses,” he says. “We think that these patients who have complex apnea are probably at risk over the long term of having more hypertension, more atrial fibrillation, probably more anxiety, and maybe a higher risk of stroke or heart attack because of blood vessel dysfunction.” Thomas’s research shows that approximately 30 percent of the population over the age of 60 has a highly activated chemoreflex, and similar percentages have been reported recently by others. Daly recently contributed an additional $100,000 to support a new clinical and research program called the Program in Chemoreflex Medicine to collect preliminary data to test this theory. This initiative has also received funds from the Research Innovation Initiative, meant to support translational and multidisciplinary studies, and spearheaded by BIDMC’s chief academic officer Vikas P. Sukhatme, M.D., Ph.D. Thomas says, “If you can successfully manipulate the respiratory chemoreflex, at a minimum you can change outcomes in hypertension and heart failure.”

Robert Stickgold, Ph.D.

Pulling an all-nighter before a big exam in order to cram in as much studying as possible might have seemed like a good idea at the time, but research now shows that a night of sleep might produce a better result. “Most people feel like the only reason they need to sleep is because otherwise they will be tired in the morning,” says Robert Stickgold, Ph.D., director of the Center for Sleep and Cognition. “But my mother was right. If you don’t get enough sleep, you are going to end up sick, fat, and stupid.” Stickgold contends that sleep is necessary for a number of biological reasons, including consolidation of memory. He argues that while you are sleeping your brain appropriately files memories from the day so that the relevant information will be easier to find the next morning. “Sleep actually enhances those memories,” Stickgold says. “It makes them stronger and more stable.”

Stickgold and his team have developed and executed different experiments to support the theory of memory consolidation. Participants are first tested to establish a baseline response to various motor, visual, or auditory tasks and tested again hours later either after a period of sleep or wakefulness. The results of the tests are significantly better following sleep than following wakefulness. “The phenomenon people will talk about is ‘recalibrated’ thus leading to improved cognitive performance. An anonymous donor recently contributed $335,000 to the Stickgold Sleep Research Program to further explore this idea.”
Stimulating Support
Sydney family gift seeks new insights into time-honored Parkinson’s treatment

Deep brain stimulation (DBS) provided a new lease on life for Stanley Sydney. When BIDMC neurosurgeon Jeffrey Arle, M.D., Ph.D., met Sydney 13 years ago, he was suffering from advanced Parkinson’s disease. The therapy, which was relatively new at the time, kept the side effects of the degenerative disease in check and allowed Sydney to watch his grandchildren grow and even to play with his first great granddaughter. “We are eternally grateful that the last 12 years of my father’s life were better than they otherwise would have been,” says Stanley’s daughter and BIDMC Overseer Roberta Sydney. “The Parkinson’s eventually advanced, but he would not have had those years, nor would he have enjoyed those years if it had not been for Jeff and his care.”

When the Sydney family decided to make a gift that would have an impact, the choice was clear. They recently contributed $225,000 to Arle’s research to further investigate and improve the therapy that enriched Stanley’s quality of life. “Our gift is about making sure that other families do not experience the suffering of Parkinson’s disease,” says Roberta, who co-chaired a Board of Overseers event in April that highlighted innovative advances in neuroscience to prevent disease and improve health. “We know so much about other parts of our body. The brain is the last thing we really need to explore. We don’t even know why the DBS works; we just know that it does.”

DBS requires a surgical procedure to implant a thin wire equipped with stimulating electrodes into a specific target deep within the brain. The electrodes are connected to a pacemaker implanted under the skin that, like a pacemaker for the heart, delivers electrical impulses directly to the target to regulate its abnormal activity. Arle is focused on developing and analyzing computational models related to therapies that use neuromodulation, such as DBS. “We study many aspects of these therapies such as how scar tissue affects stimulation, what types of parameters work best for different therapies, new types of stimulation, and new devices,” Arle explains. “A computational approach gives us flexibility to explore or study aspects of the system that cannot be examined in animal or human models easily or at all.”

BRAIN GAIN
BIDMC Scientist Receives $100K Grant for Alzheimer’s Work

In April, two representatives from the Alzheimer’s Association, MA/NH Chapter paid BIDMC researcher Tae Ho Lee, Ph.D., a special visit. Jim Wessler, president and CEO, and Peter Ham, vice president of programs and services, came in person to present Lee with a $100,000 check from their organization to support his work studying phosphorylation regulation in Alzheimer’s disease. “I am very grateful to the Alzheimer’s Association for its support of our work,” says Lee. “I look forward to sharing all we learn from our investigations with other grantees and fellow researchers in the field.”

The chemical process of phosphorylation—adding phosphate groups to proteins—is one of the most common ways to control the signaling pathways in cells. Lee and his colleagues have been studying the role of phosphorylation in regulating a protein called Pin1, which is thought to help protect nerve cells from decline in Alzheimer’s disease. Evidence suggests that the phosphorylation and subsequent inhibition of Pin1 may contribute to the development of the brain plaques and nerve cell death so common in the illness. The recent grant will support further studies of this process, which Lee’s team hopes will lead to new insights into Alzheimer’s and the identification of potential targets for drugs to slow or prevent disease progression.

WALKING ON THE WILD SIDE

Foundation Funds BIDMC Scientist’s Risky Research

On May 19 at the closing ceremony for the Boston segment of the 11th Annual Avon Walk for Breast Cancer, BIDMC researcher Gerburg Wulf, M.D., Ph.D., was presented a $150,000 check as part of a total of $1.94 million in grants to nine regional organizations for clinical programs and research in breast cancer. “These grants represent only a portion of the funding that the Avon Foundation will distribute in the New England area and across the country this year,” announced Kevin Honeycutt, the foundation’s executive director, “but we want to make sure that the impact of this walk begins today.”

With the Avon Foundation’s support, Wulf is continuing her work researching the effects of the Epstein-Barr virus (EBV) infection on breast tissue. EBV is a ubiquitous strain of the human herpes virus; 90 percent of the adult population is infected worldwide. While the role of EBV in the development of breast cancer is controversial, several lines of evidence support its involvement in the initiation or the exacerbation of the disease—evidence Wulf’s team hopes to clarify. “The Avon Foundation pursues ideas that others might find off the beaten path,” she says. “They are willing to fund research like mine, where the risk might be higher but the potential for innovation is that much greater. I am so grateful for their ability to think outside the box.”
Bruce Furie, M.D., believes that blood clots, despite their obstructive power, don’t get the attention they deserve. As a preeminent authority on thrombosis, the process by which they form, he should know. “What’s the number one killer of people? Heart attack and stroke—and that’s thrombosis,” says Furie.

“These diseases kill more people than all types of cancer combined, but for reasons that I do not understand, this field is not attracting much attention and effort at academic centers today. There are only a handful of us that do thrombosis-related research at Harvard Medical School, and yet it is so relevant to major clinical problems.” As chief of the Division of Hemostasis and Thrombosis at BIDMC, Furie has done his share to change that situation. Not only has his lab worked tenaciously to understand the mechanisms that underlie blood clot formation for the last 40 years, but he has also dedicated himself to training an ever-expanding pool of pre- and postdoctoral fellows so that the groundbreaking work he has started in this area will continue at the medical center and beyond.

Ironically, Furie himself did not begin his career in hematology, the study of blood and related diseases, but in protein biochemistry, with a particular focus on how proteins are structured and function. But during medical school, from his work both in the clinic and the lab, he made the connection between protein chemistry and blood coagulation, a link that has carried through his innovative research ever since. Furie and his team have made pioneering discoveries in understanding the role of vitamin K in the synthesis of certain blood clotting proteins. They discovered P-selectin, an adhesion molecule that serves as “molecular Velcro” to capture critical white blood cells at the site of inflammation. They were the first to crystalize and determine the structure of factor VIII, the protein missing in the blood disorder hemophilia, and in collaboration with BIDMC scientist Mingdong Huang, Ph.D., have crystalized eight more proteins involved in coagulation. But perhaps most exciting was their creation of a unique piece of technology that Furie calls “the lifeblood of my lab,” which pulled him into the world of animal models and ultimately led to an $11 million National Heart, Lung, and Blood Institute (NHLBI) grant to further fuel his work.

This technological marvel, called a widefield and confocal digital video intravital microscopy system, came about as Furie’s team was looking at a certain protein that promotes the interaction of white blood cells and platelets. They realized that the ideal way to get an answer about the protein’s function was to create a knockout mouse, a mouse which researchers genetically engineer to “knock out” the activity of a particular gene, with sometimes lethal results. “No one told me if your knockout mouse survives, you have to study mice,” chuckles Furie, who had found himself in the unusual position of needing to be able to see the effects of the gene manipulation in a live animal. The problem was nothing existed that could sufficiently overcome this obstacle. Furie’s solution? Create something himself. The novel microscopy system he and his colleagues built now allows his team to image and analyze blood clot formation in a living, anesthetized mouse.

“The whole concept of how blood clots form emerged over the years from using purified proteins and purified cells in test tubes,” says Furie. “Then suddenly, we could study this process as it was happening in an animal and look at all the components in their natural habitat. It provided a new perspective.”

That the game-changing system even exists underscores the concept that persistence pays off and showcases the importance of seed funding to pursue more out-of-the-box research ideas. “The big problem we had with our microscope is that the
NIH (National Institutes of Health) is very risk-averse,” recalls Furie. “When I put in a grant for the microscope, they said, ‘This can’t be done. This belies reality. You can’t do this on a live mouse.’ And they gave 55 reasons. But, with some discretionary money, we built it ourselves. Now, all of our grant funding is derived from studies with this microscope. It is the centerpiece of our research right at the moment.” Ironically, once Furie’s team firmly established the microscope’s potential in this area and made a groundbreaking discovery with it, the NHLBI at the NIH designated BIDMC as a Translational Research Center in Thrombotic and Hemostatic Disorders, which comes with a five-year, $11 million award. BIDMC was one of five institutions in the country to receive this type of funding.

The NHLBI award is allowing Furie’s laboratory to build upon its novel—and quite accidental—discovery that protein disulfide isomerase (PDI), which is essential for protein synthesis in cells throughout the body, is a critical player in blood clot formation. While studying another protein pathway that was “unproductive,” Furie found that, when using a laser to stimulate an injury to a blood vessel in a living mouse, PDI is rapidly released from both platelets, which circulate in the blood, and endothelial cells, which tile the blood vessel wall. “Sometimes you just have to follow your nose,” recalls Furie. “Using our microscope, we could actually see, for the first time, that PDI is secreted from the cells in the blood vessel during clot formation. After demonstrating that this PDI was absolutely required for the generation of a thrombus, it became clear that PDI outside the cell might be a potential target for thrombus prevention.”

With finding a new class of anti-thrombotic agents as the ultimate goal, Furie may just have lit upon an option that is potentially more effective than any other developed for treating blood clots before. Clots, which occur in both arteries and veins, develop in one of two ways. Clots in arteries, which lead to strokes and heart attacks, are rich in platelets; venous clots, which cause deep-vein thrombosis and pulmonary embolism, are rich in fibrin. While certain drugs on the market today work by impeding platelet clot formation (most notably aspirin and clopidogrel [Plavix]) and others work by hampering fibrin production (such as warfarin [Coumadin] and heparin), no single agent currently exists to act on both types of clots. But PDI inhibitors may well fill that void. “We have discovered that the inhibition of PDI can work in both scenarios, affecting both platelet thrombus and fibrin formation,” says Furie. “It’s a whole new approach to antithrombotic therapy.”

Pursuing the promise of this lead, Furie—in collaboration with BIDMC investigators Barbara Furie, Ph.D., his wife and longstanding research partner, and Robert Flamenhaft, M.D., Ph.D., one of his former fellows who is now an established independent investigator—subsequently established that a bioflavonoid

CONTINUED ON P. 16
called rutin is an inhibitor of PDI. Rutin is a naturally occurring compound found in fruits, vegetables, and teas and is sold over the counter as a supplement. “We really lucked out,” notes Furie. “This compound is available at your local drug store. You can buy it off the shelf. We eat it all the time. And it completely inhibits thrombus formation in the mouse.” Part of the NHLBI funding will go toward three separate clinical trials to test the efficacy of rutin and other similar PDI inhibitors in humans. The project, which will be conducted in collaboration with BIDMC hematologist Jeffrey Zwicker, M.D., will also include a pharmacokinetic study to determine optimal methods of drug delivery.

But being the biochemist that he is, Furie is also determined to get to the heart of what makes PDI inhibitors tick. “Some of our best drugs have been around forever, and no one has any idea how they do what they do,” says Furie, who is now busily trying to raise funding for functional studies of these protein pathways. “But I just can’t imagine using a new agent without having an understanding of what it’s doing or how it works. So we can prevent blood clots but what are these enzymes really doing? How do they work mechanistically? That is what this is all about.”

Furie points out that uncovering safe and effective agents to prevent blood clots and understanding how they function could not only reduce the impact of the leading killers of heart attack and stroke but also significantly alleviate other major medical problems. With the help of the NHLBI award, his team will soon be embarking on a large clinical trial to try and prevent cancer-induced thrombosis, which is the second leading cause of death in patients with the disease. He and his colleagues have also received grants from the Lupus Research Institute to study the development of blood clots related to this chronic autoimmune disorder.

The broad applications of his specialty is one reason why Furie is passionate about mentoring others to follow in his footsteps. “We’re going to have a shortage of hematologists very soon because my generation is going to die off, and we’re not training anyone to do benign hematology,” he says, noting that the field is often clumped together with oncology. “And that’s a real problem.” It’s a problem that Furie has done his part to solve, having trained more than 110 pre- and postdoctoral fellows in his laboratory over the years. But he strongly feels that it’s an area that could use some philanthropic attention. Furie believes a continued influx of funding and his team’s zealous enthusiasm for the work would be a combination difficult for a young hematologist to resist. “We want to attract the best and the brightest to this field to help us develop a drug that prevents thrombotic disease but doesn’t block the normal process of hemostasis — the minimization of blood loss after tissue injury,” he says, “That’s our holy grail.”

CONTINUED FROM P. 15

In Memoriam
Rodger P. Nordblom, 1927-2013

The BIDMC community mourns the loss of Rodger P. Nordblom, an overseer emeritus at the medical center, who died on February 10 at the age of 85. Beginning his involvement with New England Deaconess Hospital (NEDH) in the mid-1960s, Nordblom assumed a variety of leadership and committee roles through the years including corporator and overseer at NEDH and overseer at BIDMC. He also was known for his more than 30 years of consistent unrestricted giving to both institutions.

“Rodger was a dedicated supporter of BIDMC for many years and brought both intellect and passion to his work,” said Kristine Laping, senior vice president of development at BIDMC. “Rodger led by example, bringing the best of himself to every encounter, and was an inspiration to the entire community. He will be greatly missed.”

Born in Milton, Mass., Nordblom graduated Milton Academy in 1945 and then served in the U.S. Navy. He graduated from Harvard University in 1950 and soon after joined the family real estate business, Nordblom Company, where he was president for 25 years. He was a leader in the Boston real estate industry, pioneering the development of commercial properties following the construction of Route 128 in the late 1950s and millions of square feet of commercial buildings in Greater Boston throughout the ’60s and ’70s.

Beyond his work at BIDMC, Nordblom was actively involved in the Boston community, including leadership roles at WGBH, The Boys and Girls Clubs of Boston, and the Museum of Science. Intensely interested in history since his childhood, he made scrapbooks of newspaper clippings about World War II and other noteworthy events from which he ultimately published four volumes of stories.

Nordblom was predeceased by his parents, Robert C. and Marjorie C. (Payson) Nordblom, and his wife of 52 years, Mary Winder. He is survived by his wife of 10 years, Dawn; her son Danny Chandler and daughter Julie Chandler; his five children: Anne Dodge, Carolyn Los, Win Nordblom, Peter Nordblom, Lee Nordblom, and their spouses. Nordblom also leaves 19 grandchildren and 14 great-grandchildren, his sister June Robinson, her husband Jack Robinson, M.D., and many nieces and nephews.
Overcoming Resistance
BIDMC Researcher Wins $250K Award to Foil Kidney Cancer’s Survival Strategy

With the help of a recent $250,000 award, BIDMC researcher James W. Mier, M.D., hopes to undermine kidney cancer’s cunning adaptations to oxygen deprivation in order to help patients with the disease breathe a bit easier. An investigator in the Division of Hematology/Oncology and director of basic research for the Biologic Therapy Program at BIDMC, Mier received an American Association for Cancer Research (AACR)–Kure It Grant for Kidney Cancer Research at the 2013 AACR Annual Meeting in April. These two-year grants provide support for innovative translational research designed to improve the survival and quality of life of patients with kidney cancer. Mier was one of only two recipients of the grants this year.

Common mutations in kidney cancer switch on genes that signal a lack of oxygen, a process which in turn promotes the development of new blood vessels. A tumor’s dependence on new blood vessel growth, known as angiogenesis, makes it sensitive to anti-angiogenesis drugs, such as VEGF inhibitors (VEGF being a common pathway in blood vessel development). Over time, however, kidney cancer often becomes resistant to these agents. “An immediate challenge in kidney cancer concerns determining what drives resistance to VEGF inhibition and how to overcome it,” explains Mier.

Interestingly, while the resistance to VEGF inhibitor drugs in many other forms of cancer results from new mutations in the tumor cells, kidney cancer takes a different approach. “Instead, the kidney tumor makes reversible, metabolic adaptations to survive hypoxia, the depletion of oxygen induced by the loss of vascular supply,” says Mier. “These changes support the cancer’s resurgence in growth, proliferation, and metastasis.” If that weren’t enough, kidney tumors also adapt to VEGF inhibitor agents by disabling the important tumor suppressor p53, which Mier calls his “favorite protein.” The AACR-Kure It Grant will support his team’s preclinical work to foil this dual-survival strategy and prevent or delay resistance to VEGF inhibitor drugs. “I am honored to have been selected for this grant and am grateful to Kure It and the AACR for making the funds available,” says Mier. “Everyone in my lab feels encouraged by this award.”

In Memoriam
Helene Rabb Cahners-Kaplan, 1921-2012

With sadness BIDMC reports the loss of Helene Rabb Cahners-Kaplan, overseer emerita at the medical center, who died on November 2, 2012 at her home in Naples, Fla. She was 91.

Cahners-Kaplan was the mother of BIDMC Trustee Emerita Nancy L. Cahners, sister of BIDMC Trustee Emerita Carol R. Goldberg, sister-in-law of BIDMC Overseer Emeritus Avram J. Goldberg, and aunt of BIDMC Trustee Deborah B. Goldberg. She was also the daughter of the late Sidney Rabb and the niece of the late Irving Rabb, both former chairmen of the board at Beth Israel Hospital. “From an early age, Helene gave back to the community and understood the importance of philanthropy,” said Kristine Laping, senior vice president of development at BIDMC. “She served as a leader for more than 30 organizations, including president of the Beth Israel Hospital Women’s Auxiliary, and her family has been dedicated and loyal supporters of BIDMC for many years. We are all deeply grateful for her wonderful legacy.”

Born Helene Janice Rabinovitz, Cahners-Kaplan grew up in Brookline and Newton Center. After earning an associate degree at Westbrook Junior College in Portland, Maine, she studied economics at Mount Holyoke College. During her senior year in 1941, she married Norman Cahners, and together they built a publishing empire. After Cahners’s death, she married George I. Kaplan in 1989. “She was a woman of immense influence at a time when women were not invited in the halls of power,” Nancy L. Cahners said. “I know my mother would like to be remembered for having made things better, easier, and more accessible to others, to be remembered as being part of the solution.”

Cahners-Kaplan is survived by daughter Nancy L. Cahners of Brookline; son Robert Cahners and his wife, Pamela, of Naples, Fla.; and sister Carol R. Goldberg and her husband, Avram J., of Boston. She was predeceased by her son, Andrew Cahners. She leaves numerous grandchildren and great-grandchildren. She was also the stepmother of Ellen Kardon and Peter Kaplan and his surviving wife, Sally.
Smooth Transition
The Donald W. Reynolds Foundation's $1 million grant launches a new geriatrics education program

For elderly, medically complex patients, transitioning from an acute care hospital like Beth Israel Deaconess Medical Center to an extended care facility is one of the biggest challenges they might face. Despite attempts to streamline information from the inpatient to the outpatient settings, these patients are at an increased risk for medication errors, poor communication, and inconsistent protocols between providers. “When you are young, it may be easier to advocate for yourself,” explains Melissa Mattison, M.D., associate chief of the Section of Hospital Medicine. “If you are an elderly, frail person, it is much harder and there is more to keep track of.”

In an effort to provide better care for this vulnerable population, BIDMC recently received a $1 million grant from The Donald W. Reynolds Foundation to advance geriatric education and training for hospitalists, medical residents, and medical students and to implement a unique telemedicine consultation model called ECHO-Care Transitions (ECHO-CT) to provide training and support for extended care facilities. “Geriatrics is a relatively new field, and very few physicians have been trained to care properly for elderly patients,” says Lewis A. Lipsitz, M.D., chief of the Division of Gerontology. “Our goal with this grant is to ensure that current and future physicians and caregivers get the training they need to be responsive to these patients with complex needs.”

Building on the foundation of a similar educational grant from the Reynolds Foundation in 2006 and leveraging the infrastructure established through the existing ECHO-AGE and Hepatitis C ECHO consultation model, this new program will educate more than 500 internal medicine residents and ultimately improve the standard of care for hundreds of patients. For residents, the new material will be embedded in their current curriculum and will include better understanding why patients are readmitted. Residents will also participate in the ECHO-CT clinic, where they will collaborate with providers at the extended care facilities to review the cases of patients recently discharged from BIDMC to ensure the facility has the knowledge and expertise to manage those patients. “Without close communication between providers, things get lost,” Mattison says. “Conversation can go a long way, whether it’s about important clinical details, important medications that a patient is supposed to be on, or nuances in treatments that are hard to be transferred on a piece of paper.” The educational component of the grant also includes a monthly educational series for hospitalists and a fourth-year elective in transitions of care for Harvard Medical School students.

 BITS & PIECES

Little updates on big happenings in the BIDMC community.

Want to learn more or share one of your own? E-mail development@bidmc.harvard.edu.

- This spring, Maria Kontaridis, Ph.D., an investigator in the Division of Cardiology at BIDMC, received a $50,000 grant from the Children's Cardiomyopathy Foundation (CCF) for her work. Kontaridis's research focuses on pediatric hypertrophic cardiomyopathy, a chronic and potentially life-threatening genetic heart disease which is a leading cause of sudden death in young athletes.

- On June 2, the Cancer Center at BIDMC hosted the 20th Celebration of Life, an annual event that brings together cancer patients and survivors, their loved ones, and their caregivers for a day of learning and celebrating. The day included a symposium on breast cancer and 26 different workshops ranging from “Cancer in the 21st Century” to “Nutrition and the Immune System.”

- Medical Grand Rounds were held in memory of Katherine Swan Ginsburg, M.D., at the end of May. Charles Halem, M.D., Harold Amos Distinguished Academy Professor of Medicine at Harvard Medical School, presented a lecture on humanism in medicine entitled “Reflections on the Clinician’s Journey,” which focused on four aspects of clinical practice — kindness, curiosity, affirmation, and passion.

- The 2013 Nursing Awards and Scholarships were presented on May 13 by the Lois E. Silverman Department of Nursing and Ambulatory and Emergency Services. Eighty-one nurses, five nurse practitioners, and four assistive/in-training staff were honored with 37 awards and a total of $120,000.

- Eighty-five BIDMC team members raised more than $10,600 for the 28th annual AIDS Walk Boston in June. BIDMC has supported this event, which benefits the AIDS Action Committee, since its inception in 1986. The BIDMC team walked in honor of Norman Letvin, M.D., and his tireless dedication to the development of an HIV vaccine.

- Supporters of the BreastCare Center Renovation, including patients, donors, committee members, and BIDMC doctors, celebrated the project together at a Red Sox game on July 24. The National Accreditation Program for Breast Centers awarded a three-year accreditation to BIDMC’s BreastCare Center last year. BIDMC was the first academic medical center in Boston to receive this honor.
ON THE SCENE

RETHINKING THE BRAIN
APRIL 4, 2013

More than 200 guests attended this Board of Overseers-sponsored event, which focused on applying new concepts in neuroscience to prevent disease and improve health. Hosted by Sid Queler, chair of the Board of Overseers, along with event co-chairs Lorraine "Dina" Chu and Roberta Sydney, the event featured interactive exhibits and informative discussions with distinguished members of BIDMC’s Center for Mind–Brain Restoration. Attendees had the opportunity to learn about the medical center’s leading-edge advances that instead of masking the symptoms of neurological disease, injury, or aging, actually change the brain and alter its long-term function.

1 Sandy Kurson, Amye Kurson
2 Ron Alterman, M.D., Kevin Tabb, M.D., Sid Queler, Roberta Sydney, Lorraine “Dina” Chu, Bonnie Wong, Ph.D., Alvaro Pascual-Leone, M.D., Ph.D., Clifford Saper, M.D., Ph.D.
3 Kevin Tabb, M.D., Sid Queler
4 Roberta Sydney, Sheila Sydney

LUNN SOCIETY LUNCHEON
MAY 3, 2013

BIDMC welcomed more than 50 donors to its annual Lunn Society luncheon. This year’s event featured a discussion on the changing medical landscape and the future of health care, with remarks by Marc B. Garnick, M.D., BIDMC oncologist and director of the medical center’s Cancer Network Development, and Stuart A. Rosenberg, M.D., president and CEO of Harvard Medical Faculty Physicians at BIDMC. The Lunn Society recognizes donors who have included the medical center in their estate plans. Over the past 25 years, planned gifts accounted for nearly $70 million of the dollars raised at BIDMC.

5 Mitchell Rabkin, M.D., Joan Rome, Adrienne Rabkin, Jay Fialkow, Sarah Salter Levy
6 Alfred and Trudy Agress
7 Marc Garnick, M.D., Stuart Rosenberg, M.D.

CARDIOVASCULAR BREAKFAST
MAY 21, 2013

BIDMC’s Cardiovascular Advisory Committee welcomed 85 guests to the Four Seasons Hotel Boston for an educational breakfast, where attendees learned about the most challenging and prevalent heart conditions of our time. Chaired by Jack Manning, the program featured presentations by leading faculty from the renowned Harvard-Thorndike Arrhythmia Institute at BIDMC, which is led by Mark Josephson, M.D., chief of cardiovascular medicine. The event provided another opportunity to honor Josephson, who recently received the prestigious Paul Dudley White Award from the American Heart Association. BIDMC is currently trying to raise funds for a chair in Josephson’s name.

8 Madeline and Richard J. Glugeth
9 Daniel B. Kramer, M.D., Alfred E. Buxton, M.D., Heather Kahn, Karen Thomas, M.D., Mark Josephson, M.D., Saumya Das, M.D., Ph.D., Anthony Rosenzweig, M.D.
10 Members of the BIDMC Cardiovascular Advisory Committee
11 Jack P. Manning
Alison Small, R.N., right, met up with Emmy and Academy Award winner Kevin Spacey, who stopped by West Clinical Center 6 and 7 at Beth Israel Deaconess Medical Center in April to visit patients and caregivers impacted by the Boston Marathon bombings. In the days and weeks that followed the tragedy, a number of celebrities and local dignitaries visited the medical center to show their support.

“As the first anniversary of my father’s passing approaches, there is no better way to honor him than with a brick in the Cancer Garden of Hope and a contribution to BIDMC.”

—Alexandra Marcy, Cancer Garden of Hope supporter

The Cancer Garden of Hope is sponsored by the Conquer Cancer Coalition of Massachusetts.

To learn more, please visit conquercancer.org/gardenofhope.